首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75469篇
  免费   11340篇
  国内免费   6648篇
化学   46910篇
晶体学   1801篇
力学   2018篇
综合类   921篇
数学   7068篇
物理学   34739篇
  2023年   614篇
  2022年   1315篇
  2021年   2402篇
  2020年   2292篇
  2019年   2143篇
  2018年   1898篇
  2017年   2117篇
  2016年   2869篇
  2015年   2702篇
  2014年   3434篇
  2013年   6141篇
  2012年   4500篇
  2011年   4731篇
  2010年   4219篇
  2009年   4910篇
  2008年   4924篇
  2007年   5474篇
  2006年   4697篇
  2005年   3513篇
  2004年   3334篇
  2003年   3005篇
  2002年   2514篇
  2001年   2260篇
  2000年   1837篇
  1999年   1501篇
  1998年   1324篇
  1997年   1088篇
  1996年   1143篇
  1995年   1039篇
  1994年   1001篇
  1993年   930篇
  1992年   844篇
  1991年   558篇
  1990年   502篇
  1989年   376篇
  1988年   440篇
  1987年   311篇
  1986年   337篇
  1985年   423篇
  1984年   325篇
  1983年   180篇
  1982年   356篇
  1981年   524篇
  1980年   457篇
  1979年   486篇
  1978年   399篇
  1977年   296篇
  1976年   249篇
  1974年   87篇
  1973年   170篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
31.
32.
Biomaterial scaffolds are the cornerstone to supporting 3D tissue growth. Optimized scaffold design is critical to successful regeneration, and this optimization requires accurate knowledge of the scaffold's interaction with living tissue in the dynamic in vivo milieu. Unfortunately, non‐invasive methods that can probe scaffolds in the intact living subject are largely underexplored, with imaging‐based assessment relying on either imaging cells seeded on the scaffold or imaging scaffolds that have been chemically altered. In this work, the authors develop a broadly applicable magnetic resonance imaging (MRI) method to image scaffolds directly. A positive‐contrast “bright” manganese porphyrin (MnP) agent for labeling scaffolds is used to achieve high sensitivity and specificity, and polydopamine, a biologically derived universal adhesive, is employed for adhering the MnP. The technique was optimized in vitro on a prototypic collagen gel, and in vivo assessment was performed in rats. The results demonstrate superior in vivo scaffold visualization and the potential for quantitative tracking of degradation over time. Designed with ease of synthesis in mind and general applicability for the continuing expansion of available biomaterials, the proposed method will allow tissue engineers to assess and fine‐tune the in vivo behavior of their scaffolds for optimal regeneration.  相似文献   
33.
The electrochemical behavior of austenitic stainless steel (Type 304) in 3 M sulfuric acid with 3.5% recrystallized sodium chloride at specific concentrations of butan-1-ol was investigated with the aid of potentiodynamic polarization, open circuit measurement and weight loss technique. Butan-1-ol effectively inhibited the steel corrosion with a maximum inhibition efficiency of 78.7% from weight-loss analysis and 80.9% from potentiodynamic polarization test at highest concentration studied. Adsorption of the compound obeyed the Freundlich isotherm. Thermodynamic calculations reveal physiochemical interactions and spontaneous adsorption mechanism. Surface characterizations showed the absence of corrosion products and topographic modifications of the steel. Statistical analysis depicts the overwhelming influence and statistical significance of inhibitor concentration on the inhibition performance.  相似文献   
34.
A panel of six new arene Ru (II)‐NHC complexes 2a‐f , (NHC = 1,3‐diethyl‐(5,6‐dimethyl)benzimidazolin‐2‐ylidene 1a , 1,3‐dicyclohexylmethyl‐(5,6‐dimethyl)benzimidazolin‐2‐ylidene 1b and 1,3‐dibenzyl‐(5,6‐dimethyl)benzimidazolin‐2‐ylidene 1c ) were synthesized from the transmetallation reaction of Ag‐NHC with [(η6‐arene)RuCl2]2 and characterized. The ruthenium (II)‐NHC complexes 2a‐f were developed as effective catalysts for α‐alkylation of ketones and synthesis of bioactive quinoline using primary/amino alcohols as coupling partners respectively. The reactions were performed with 0.5 mol% catalyst load in 8 h under aerobic condition and the maximum yield was up to 96%. Besides, the different alkyl wingtips on NHC and arene moieties were studied to differentiate the catalytic robustness of the complexes in the transformations.  相似文献   
35.
Nanoparticles have an immense importance in various fields, such as medicine, catalysis, and various technological applications. Nanoparticles exhibit a significant depression in melting point as their size goes below ≈10 nm. However, nanoparticles are frequently used in high temperature applications such as catalysis where temperatures often exceed several 100 degrees which makes it interesting to study not only the melting temperature depression, but also how the melting progresses through the particle. Using high‐resolution transmission electron microscopy, the melting process of gold nanoparticles in the size range of 2–20 nm Au nanoparticles combined with molecular dynamics studies is investigated. A linear dependence of the melting temperature on the inverse particle size is confirmed; electron microscopy imaging reveals that the particles start melting at the surface and the liquid shell formed then rapidly expands to the particle core.  相似文献   
36.
A new crystalline form of αβ‐d ‐lactose prepared by oven drying a concentrated aqueous solution of d ‐lactose is a lesson in the power of observation and the rigorous analysis of powder samples.  相似文献   
37.
Superhalogens, owing to their large electron affinity (EA, exceeding those of any halogen atom), play an essential role in physical chemistry as well as new material design. They have applications in hydrogen storage and lithium-ion batteries. Owing to the unique geometries and electronic features of magnesium-based clusters, their potential to form a new class of lithium salts has been investigated here theoretically. The idea is assessed by conducting ab initio computations on Li+/MgnF2n+1-2mOm compounds (n=2, 3; m=0-3) and analyzing their performance as potential Li-ion battery electrolytes. The Mg3F7 cluster, with large electron binding energy (EA of 7.93 eV), has been proven to serve as a building block for lithium salts. It is shown that, apart from high electronic stability, the new superhalogen-based electrolytes exhibit a set of desirable properties, including a large band gap, high electrolyte stability window, easy mobility of the Li+, and favorable insensitivity to water.  相似文献   
38.
A route to the synthesis of novel 5,7-diazapentacenes and some preliminary studies on their properties is reported. A single crystal X-ray diffraction study of the dihexyl derivative showed it had formed a dimer during the analysis. The materials possess lower lying frontier orbitals than pentacene and may have potential applications in organic electronic devices. This synthetic method may be applicable to the synthesis of other azaacenes.  相似文献   
39.
The aim of this work was i) to develop a hydrothermal, low-temperature synthesis protocol affording the upconverting hexagonal phase NaYF4 with suitable dopants while adhering to the “green chemistry” standards and ii) to explore the effect that different parameters have on the products. In optimizing the synthesis protocol, short reaction times and low temperatures (below 150 °C) were considered. Yb3+ and Er3+ ions were chosen as dopants for the NaYF4 material. Within the context of the second goal, parameters including nature of the precursors, treatment temperature, and treatment time were investigated to afford a pure hexagonal crystalline phase, both in the doped and undoped materials. To fully explore the synthesis results, the prepared materials were characterized from a structural (XRD), compositional (XPS, ICP-MS), and morphological (SEM) point of view. The upconverting properties of the compounds were confirmed by photoluminescence measurements.  相似文献   
40.
Oxidative dehydrogenation (ODH) of n-octane was carried out over a vanadium–magnesium oxide catalyst in a continuous flow fixed bed reactor. The catalyst was characterized by ICP–OES, powder XRD and SEM. The catalytic tests were carried out at different gas hourly space velocities (GHSVs), viz. 4000, 6000, 8000, and 10,000 h?1. The best selectivity for octenes was obtained at the GHSV of 8000 h?1, while that for C8 aromatics was attained at the GHSV of 6000 h?1 at high temperatures (500 and 550 °C). The catalytic testing at the GHSV of 10,000 h?1 showed the lowest activity, while that at the GHSV of 4000 h?1 consistently showed the lowest ODH selectivity. Generally, the best ODH performance was obtained by the catalytic testing at the GHSVs of 6000 and 8000 h?1. No phasic changes were observed after the catalytic testing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号